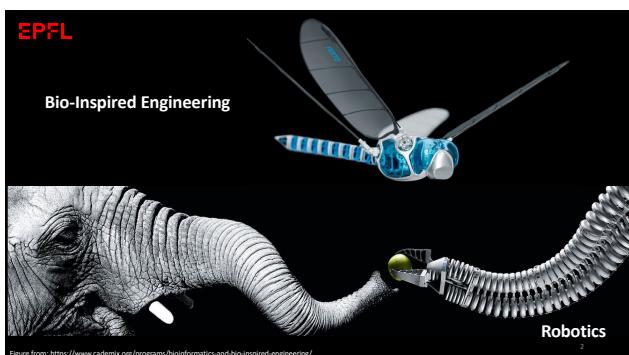
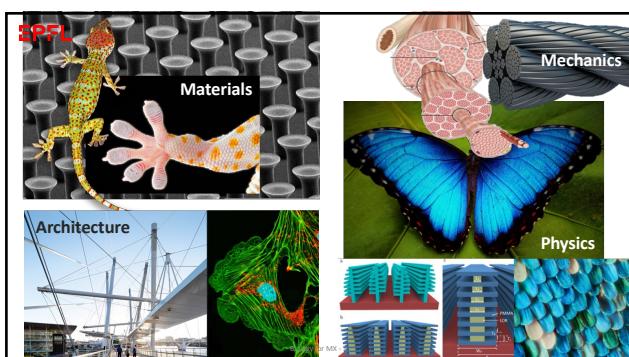


1



2



3

EPFL

Course Content

BLOCK 1: Introduction and engineering with cellular components

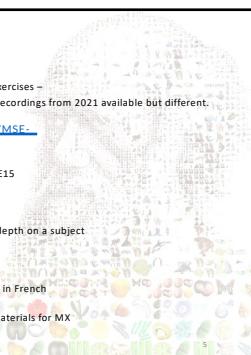
Lecture 1.	Intro to biology and cells	(February 21)
Lecture 2.	Proteins and protein-based materials	(February 28)
Lecture 3.	DNA and DNA-based materials	(March 6)
Exercise 1.	Proteins, peptides and DNA	(March 13)

BLOCK 2: Inter- and intracellular action

Lecture 4.	ECM, adhesion and artificial matrices	(March 20)
Lecture 5.	Virus, antibodies and immune engineering	(March 27)
Lecture 6.	Bacteria	(April 10)
Exercise 2.	Nanoparticles and Scaffolds	(April 17)

BLOCK 3: Physics of biological action

Lecture 7.	Receptors and targeting	(April 24)
Lecture 8.	Endocytosis	(May 1)
Lecture 9.	Signaling and communication	(May 8)
Exercise 3.	Engineering functionality	(May 15)


Lecture 10. Revision and conclusion
 Open office. Questions, discussion, exam prep

Biology for MX - 1

4

EPFL

Organization

Lectures 2x45 min, 3 blocks of 3 lectures, followed by 1 week of exercises – recordings (hopefully) available the week after, current recordings from 2021 available but different.

Mediaspace subscription: <https://mediaspace.epfl.ch/channel/MSF-212-Biology+for+Engineers/30273>

Exercises + Q&A with TAs on 4 occasions Wednesdays 8.15-10h CE15

Virtual open office: TBA, 1 or 2 weeks before the exam

Background reading on Moodle (scientific articles) provide more depth on a subject

Exam: 3h written in final session

English: the course and exam are in English, you can ask questions in French

Preparation: This course forms the preparation for MSE 471: Biomaterials for MX

Biology for MX - 1

5

EPFL

Exercises

These help to prepare you for the exam

Answers sheets will be provided after the session.

TAs = Pauline Hendrickx (Pauline.hendrickx@epfl.ch)
 Pitt Meyer (pitt.meyer@epfl.ch)
 Shujie Li (shujie.li@epfl.ch)

Pauline

Pitt

Shujie

Biology for MX - 1

6

EPFL **Demonstrations - recorded**

BLOCK 1: Introduction and engineering with cellular components
 Lecture 1 DEMO: Microscopy of cells
 Lecture 3 DEMO: DNA and DNA-based materials

BLOCK 2: Inter- and intracellular action
 Lecture 4 DEMO: Cytoskeleton and tensegrity

BLOCK 3: Physics of biological action
 Lecture 8 DEMO: Endocytosis
 Lecture 9 DEMO: Bacteria in action

<https://mediaspace.epfl.ch/channel/MSE-212+Biophysics+for+Engineers/30273/subscribe>

https://mediaspace.epfl.ch/media/DEMO%201%20Demo%201%20cell%20demonstration%20and%20organelle%20staining%20/0_039c41ur

Biology for MX - 1

7

EPFL **Biology**

(A) Atoms to organisms: A diagram showing the hierarchical structure of life, from atoms (protons, neutrons, electrons) to molecules (small, large, proteins, nucleic acids), then to cells (specialization, tissues, organs, organ systems), and finally to the organism (molecular imports from food).

(B) Organisms to ecosystems: A diagram showing the levels of organization from population to biosphere, including a frog, a pond, a landscape, and the Earth.

Biology is the natural science that studies life and living organisms, including their physical structure, chemical processes, molecular interactions, physiological mechanisms, development and evolution.

Despite the complexity of the science, certain unifying concepts consolidate it into a single, coherent field.

1.1 Biophysics NIST images
 Used with permission from NIST and NOAA.

Biology for MX - 1

8

EPFL **Objectives of this Course**

In this course, we explore the concepts and fundamentals needed to understand how **biology** can be used to draw **inspiration** from **materials engineering challenges**. Through touching the basics of (cell) biology and the physics of biological phenomena, you will be equipped for future more nuanced and detailed (bio)materials discussions. This course is foundational for MSE 471: Biomaterials for MX.

BLOCK 1: Introduction and engineering with cellular components
 We learn about the main components found in cells and how they are used as synthetic bioinspired materials

BLOCK 2: Inter- and intracellular action
 We explore physical phenomena that give the cell mechanical properties and how this translates to materials design.

BLOCK 3: Physics of biological action
 We learn about the interaction of cells with other biological entities and their importance for materials engineering.

Biology for MX - 1

9

EPFL

Cells

A Cell is the basic membrane-bound unit that contains the fundamental molecules of life and of which all living things are composed. A single cell can be a complete organism in itself, such as a bacterium or yeast. Other cells acquire specialized functions as they mature and form tissues.

Cells can vary between 1 micrometer (μm) and hundreds of micrometers in diameter. Within a cell, DNA (chromatin) is approximately 100 nanometers (nm) wide, whereas the nucleus that encloses this DNA can be approximately 100 times bigger (about 10 μm).

Biology for MX - 1 10

10

EPFL

Cells in Numbers

The average human is made up of approximately **37.2 trillion cells**

37 million-million : 37.000.000.000.000

There are about **200 different cell types**, for example:

Biology for MX - 1

11

EPFL

What can engineers do?

"the most complicated watch in the world"

2,800+ components

Swiss watchmaker
Vacheron Constantin

JumboJet

A jumbo airplane has about **5,000,000 parts**

A single car:
about **30,000 parts**, counting down to the smallest screws.

A computer

the independent electronic parts range in the **thousands** and if you count single transistors as a part in itself you get **millions** of parts.

Biology for MX - 1 12

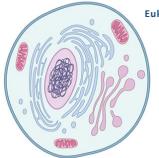
12

EPFL

Size and Growth

As a cell grows, its **volume** increases much more rapidly than its **surface area**. Since the **surface** of the cell is what allows the entry of **oxygen**, large cells cannot get as much oxygen as they would need to support themselves.

In other words, as a **cell grows**, it becomes less efficient.


One way to become more efficient is to **divide**; another way is to **develop organelles** that perform specific tasks.

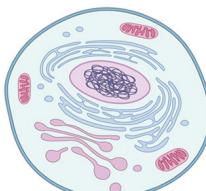
These adaptations lead to the development of more sophisticated cells called **eukaryotic cells**.

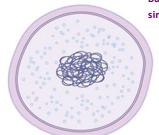
Prokaryotic
Bacteria and single cell organisms

Eukaryotic
Animals and plants

Biology for MX - 1 13

13




EPFL

Eukaryotic vs Prokaryotic Cells

Animals and plants

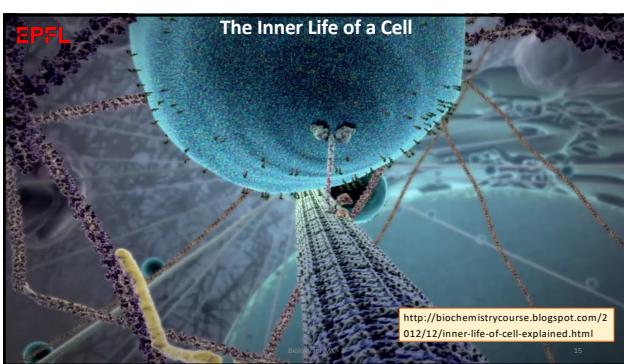
Bacteria and single cell organisms

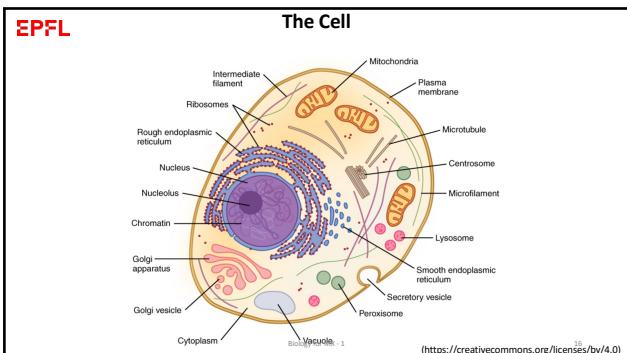
A **eukaryotic cell** has membrane-enclosed DNA, which forms a structure called the **nucleus** (note the purple DNA enclosed in the pink nucleus). A typical eukaryotic cell also has additional membrane-bound **organelles** of varying shapes and sizes.

Prokaryotes are unicellular organisms that lack organelles or other internal membrane-bound structures. Therefore, they do not have a nucleus, but, instead, generally have a **single chromosome**: a piece of circular, double-stranded DNA located in an area of the cell called the **nucleoid**.

Biology for MX - 1 14

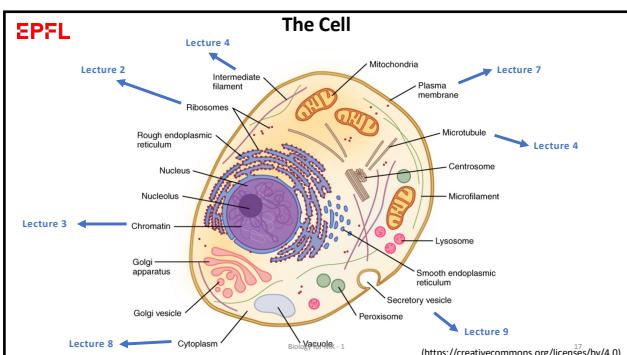
14



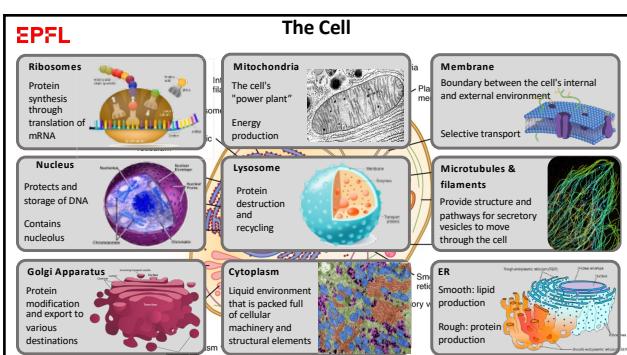


15

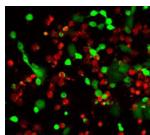
16



17

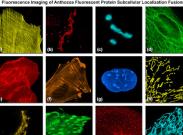


18


EPFL **DEMO: The Cell in Action** TA: Armand Kurum

DEMO 1:

Cell division


Cell viability
What could kill a cell?

Cell compartments

- Mitochondria
- Membrane
- Nucleus
- Actin Filaments

Fluorescence Imaging of Adenovirus Encoded Protein Substrates Localization Patterns

Biology for MX - 1 19

19

EPFL **After the break:**

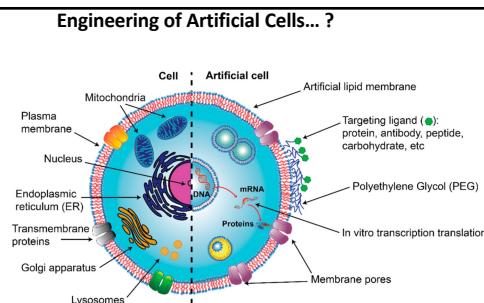
How can MATERIALS be used for the:

Engineering of Artificial Cells... ?

Engineering of Artificial Organs... ?

Engineering of Artificial Humans... ?

Biology for MX - 1 20



20

EPFL **Engineering of Artificial Cells... ?**

<https://doi.org/10.1021/acsnano.7b03245>

Biology for MX - 1 21

21

EPFL

Block copolymer (e.g. diblock)

Comparable to lipids, synthetic block co-polymers can be made with hydrophilic/hydrophobic molecules.

Polymersomes are artificial vesicles with radii ranging from 50 nm to 5 μm or more.

They are made using **amphiphilic** synthetic block co-polymers to form the vesicle membrane and have a hydrophilic centre.

Polymersome

Biology for MX - 1

<https://doi.org/10.1016/j.aca.2010.07.027>

Aggregate type	Packing parameter	Surfactant geometry	Aggregate structure
Spherical Micelles	$\frac{V}{a_s l_c} < \frac{1}{3}$	area (m^2) volume (m^3)	
Cylindrical Micelles	$\frac{1}{3} < \frac{V}{a_s l_c} < \frac{1}{2}$		
Flexible Bilayers or Vesicles	$\frac{1}{2} < \frac{V}{a_s l_c} < 1$		
Planar Bilayers	$\frac{V}{a_s l_c} \sim 1$		

22

EPFL

Artificial Organelles?

The concept of an artificial cell mimic:

- (1) initial encapsulation of different enzymes in small polymersome nanoreactors
- (1) mixing of the organelle mimics, cytosolic enzymes, and reagents
- (2) encapsulation of the reaction mixture in big polymersome vesicles
- (3) the functional cell mimic inside which enzymatic multicompartiment catalysis takes place.

A

<https://doi.org/10.1002/anie.201308141>

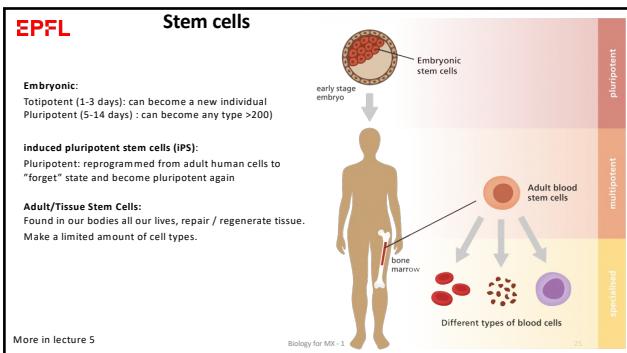
Biology for MX - 1

23

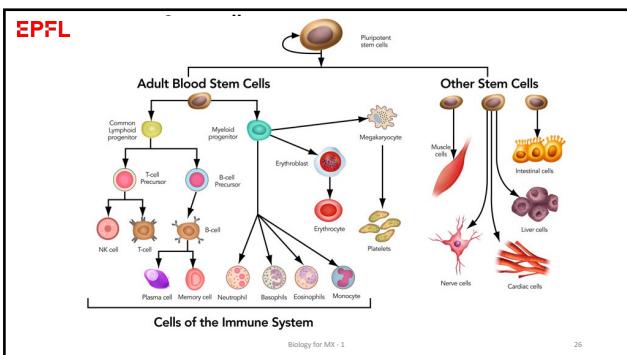
EPFL

Cellular Organization

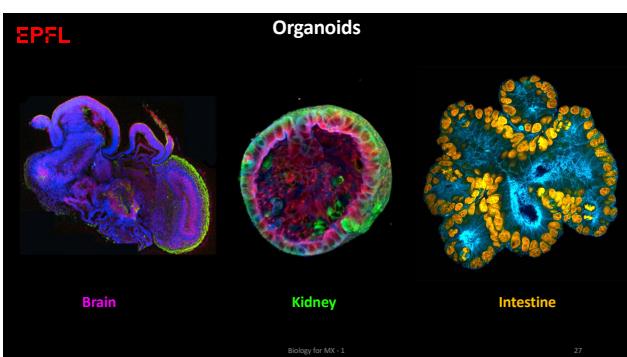
Cells in multicellular organisms **organize** themselves in such a way that enables a **greater structure and function**. Cells differentiate into **specific structures and functions**, and organize themselves as such into **tissues**. The different tissues can then form **organs** with yet a **higher level of structure and function**, and organs can work together in certain broad areas of the organism's structure and function by taking part in **organ systems**.


Does engineering these in the lab require materials with hierarchical organization?

Structure and Function through hierarchical organization of components


<https://thealevelbiology.co.uk/organization-under-the-microscope-cells-tissues-organs/>

Biology for MX - 1


24

25

26

27

EPFL Engineering of cellular organization: Organoids

An organoid is a miniaturized and simplified version of an organ produced *in vitro* in three dimensions that shows realistic micro-anatomy.

Production of Organoids

Biology for MX - 1

28

EPFL Engineering of cellular organization: Organoids

Applications in Engineering and Healthcare

Biology for MX - 1

29

EPFL Intestinal Organoids

Day 1, Day 2, Day 2.5, Day 3, Day 4, Day 4.5, Day 5

b, c

d

e

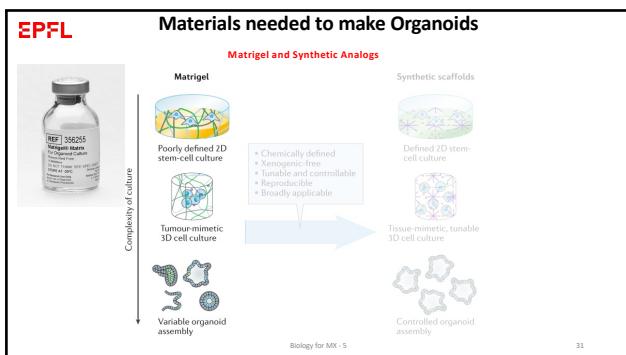
Lumen

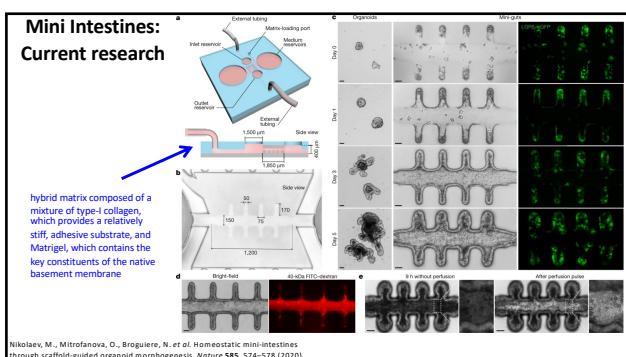
Villus domain

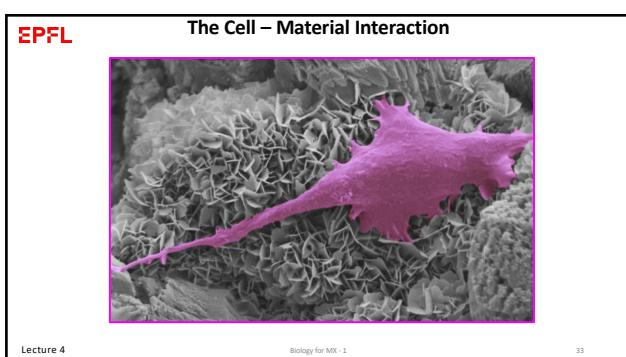
Crypt domain

Biology for MX - 1

30







31

32

33

EPFL

Engineering Challenges

Stem cell fate decisions can be affected by properties inherent to materials near the cell/material interface:

a Cell Shape Stem Cell Lineage Specification
b Matrix Elasticity d Surface Chemistry
c Topography

Lecture 4 DOI 10.3390/gels2030020.
Biology for MX - 1 34

34

HUMAN ORGANS-ON-CHIPS

Emulating organ-level functions

EPFL

35

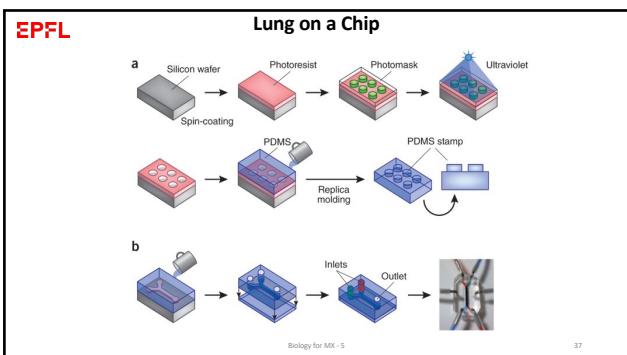
EPFL

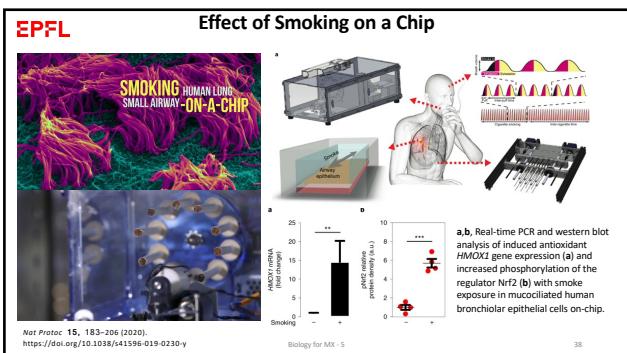
Lung on a Chip

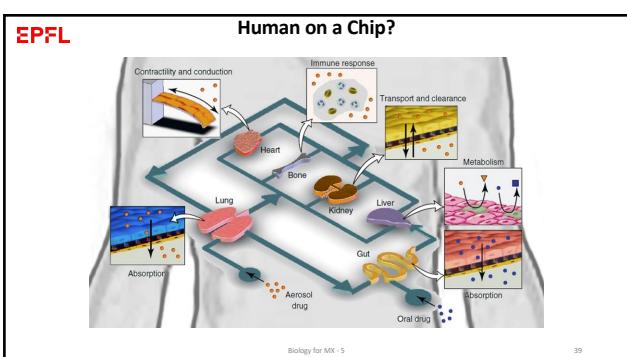
Lung-on-a-Chip

air flow
blood flow
IL-2

Biology for MX - 5 36






36

37

38

39

EPFL

Impact of “on a chip” research

As an alternative to conventional cell culture and animal models, human organs-on-chips could transform many areas of basic research and drug development.

They could be applied to research on **molecular mechanisms** of organ development and disease, on **organ-organ coupling** and on the **interactions** of the body with stimuli such as **drugs, environmental agents, consumer products and medical devices**.

Fundamental questions

- 1) How microenvironmental cues regulate cell differentiation, tissue development and disease
- 2) how tissues heal and regenerate (e.g., mechanisms of control of angiogenic sprouting and epithelial sheet migration)
- 3) how different types of immune cells and cytokines contribute to toxicity, inflammation, infection and multi-organ failure.

40

EPFL

Conclusion

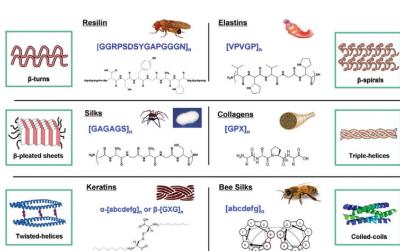
Biology is a highly diverse field, and we will cover only a very small subsection in this course.

We can learn enormous amounts from the **engineering efficacy** seen in natural materials.

Nature has **billion years of experience** in design optimization, it would be **foolish** not to draw inspiration from it.

Many **engineering solutions** can be found in **nature**.

It is therefore crucial as (material) engineers to **know some basics** of biology.


41

EPFL

Next week

Lecture 2.

Proteins and protein based materials

42